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A simple electronic circuit demonstrating Hopf bifurcation
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A nonlinear electronic circuit comprising of three nodes with a feedback loop is analyzed. The system

has two stable states, a uniform state and a sinusoidal oscillating state, and it transitions from one to

another by means of a Hopf bifurcation. The stability of this system is analyzed with nonlinear equations

derived from a repressilator-like transistor circuit. The apparatus is simple and inexpensive, and the

experiment demonstrates aspects of nonlinear dynamical systems in an advanced undergraduate

laboratory setting. # 2022 Published under an exclusive license by American Association of Physics Teachers.

https://doi.org/10.1119/5.0062969

I. INTRODUCTION

A simple electronic circuit with a nonlinear electronic
component can exhibit chaotic behavior.1–3 Mishina et al.
used a simple analog electronic circuit and demonstrated
successive bifurcations leading to chaotic regimes.4 Later
Hellen used a slightly improved electronic circuit based on
a simple nonlinear system, a finite difference equation
with a quadratic return map, and showed bifurcation dia-
grams on an oscilloscope.5 Goswami and Ray used a sim-
ple electronic circuit with a voltage-controlled current
source, which exhibits feature-rich dynamics and several
bifurcations.6 Sack et al. constructed an electronic circuit
which possessed remarkable organization in periodic
oscillations in parameter space.7 Cabeza et al. developed
an electronic circuit with broad cycles.8 Even an electronic
circuit with a single transistor can display nonlinear
behavior like limit cycles such as in the Hartley and
Colpitts oscillators.9

The Hopf bifurcation is a special kind of bifurcation that
involves the transition from stable behaviour of a system to
periodic and vice versa.1 It is prevalent in many physical
phenomena, including repressilators in genetic networks,
inverted pendulums, fluid flow about a sphere, and electronic
circuits with negative differential resistance compo-
nents.10–14 Particularly, it is from the repressilator-based
configuration that we get our motivation for the circuit. A
repressilator is a genetic regulatory network comprised of at
least one feedback loop of at least three genes. Taking inspi-
ration from this, Rim et al. constructed an electronic circuit
with a negative feedback loop consisting of three nodes,
where each node models a gene.15 The primary component
of each node is a transistor, which serves as the means for
negative feedback between nodes. We present a detailed
analysis of the dynamics of the Hopf bifurcation in this
3-node electronic circuit. We obtain explicit formulae for the
dependence of the bifurcation resistance on the applied volt-
age and for the variation of the fixed point voltage with resis-
tance and applied voltage. The transistors used here are
inexpensive, and the other components are easily found
in any undergraduate physics laboratory. The theory
of the Hopf bifurcation is also relatively simple, requir-
ing only knowledge of multivariable calculus and
calculus-based classical mechanics. Coupled with the
simplicity of the circuit design and the circuit analysis,
this experiment is appropriate to introduce advanced

undergraduate students to the fascinating world of non-
linear dynamics.

II. STRUCTURE OF THE CIRCUIT

The electronic circuit we use here has been taken from the
paper by Rim et al.15 It consists of three identical nodes,
which are connected to each other in a cycle to form a nega-
tive feedback loop. The structure of each node is shown in
Fig. 1, where the transistor, resistors R1 and R2, and the
capacitor all have fixed values. The resistor R3 is variable
and is the independent bifurcation parameter of the system.
The transistor used in a node is an NPN bipolar junction tran-
sistor (BJT) with VB, VC, and VE as base, collector, and emit-
ter voltages, respectively, and IB, IC, and IE as corresponding
currents. Vi; Ii;Vo, and Io represent input and output voltages
and currents, respectively, and VCC is the supply voltage. In
the analysis, all the time-dependent parameters are written in
corresponding lower case letters. The entire circuit compris-
ing all the three nodes is shown in Fig. 2. So, the cycle is
formed by:

• The vo of the first node serving as the vi of the second
node;

• The vo of the second node serving as the vi of the third
node;

• The vo of the third node serving as the vi of the first node.

In the whole loop, each of the three resistances labelled R3

have the same values at all times and are varied
simultaneously.

III. CIRCUIT ANALYSIS

A. Modelling of an NPN BJT in active mode

An NPN BJT has four modes of operation: active, cutoff,
reverse active, and saturation, which depend on whether
vBE ¼ vB � vE and vCB ¼ vC � vB are positive or negative,
where vBE and vCB are the transient voltages at the base-
emitter and collector-base junctions, respectively. In our
experimental setup, BJT is in the active mode (that is, both
vBE and vCB are positive). So, we focus on this mode only
here. For an NPN BJT in the active mode, the Ebers-Moll
model gives, under the assumption of physically realistic
voltages, the equations

908 Am. J. Phys. 90 (12), December 2022 http://aapt.org/ajp # 2022 Published under an exclusive license by AAPT 908

https://doi.org/10.1119/5.0062969
http://crossmark.crossref.org/dialog/?doi=10.1119/5.0062969&domain=pdf&date_stamp=2022-11-17


iC ¼ IS exp
vBE

VT
; (1)

iC ¼ aiE; (2)

iC ¼ biB: (3)

Here, IS is the saturation current, VT is the thermal voltage,
and a and b are two proportionality constants. Now, we also
have iE ¼ iC þ iB, with all three positive (as vBE and vCB

are positive). Thus, we get the relations a ¼ b=ð1þ bÞ or
b ¼ a=ð1� aÞ between a and b. For typical NPN BJTs, b
ranges from 50 to 200, and so a ranges from 0.98 to 0.99.
Also, IS is of the order of 10�12A for typical NPN BJTs, and
VT ¼ 0:025875 V at room temperature (298 K). For further
details on NPN BJTs, readers are encouraged to refer to Ref. 9.

B. Lambert W function

The Lambert W function W(x) is defined as the real solu-
tion of the equation yey ¼ x. We summarize here some prop-
erties of this function for positive x, which will be used
throughout. For detailed proofs, one may look at Ref. 17.

• Single-valued: The function W(x) is single valued, that is,
for any x, there is only one real y such that yey ¼ x.

• Positive: For x > 0, W(x) > 0.
• Monotonic: W(x) is a monotonically increasing function.

That is x1 > x2 ) Wðx1Þ > Wðx2Þ.

• Derivative:

dWðxÞ
dx

¼ 1

x

WðxÞ
1þWðxÞ : (4)

C. Modelling the node

For this circuit, as the emitter is grounded in the node,
vE ¼ 0, and so vB ¼ vBE. Applying Kirchoff’s Laws and the
results in Sec. III A, we get

dvo

dt
¼ VCC � vo � iCR1 � ioðR1 þ R2Þ

CðR1 þ R2Þ
; (5)

log
iC

IS
¼ vi

VT
� R3

bVT
iC: (6)

Let us take a ¼ ISR3=bVT for simplicity. Then, we can solve
for iC with the help of the Lambert W function WðxÞ,

iC ¼
bVT

R3

W a exp
vi

VT

� �
: (7)

Note that a depends only on R3 (the bifurcation parameter).
On substituting this in Eq. (5), we get the variation of vo as

dvo

dt
¼

VCC� vo� bVT
R1

R3

W a exp
vi

VT

� �
� ioðR1þR2Þ

CðR1þR2Þ
: (8)

D. Modelling the circuit

For this circuit, the input of a node is the output of the pre-
vious node. So, the values of V and I of a node depend on
both the preceding and succeeding nodes. Now, formally, let
us define node 4 to be identical to node 1, and node 0 as
identical to node 3. Then, we can say that node n depends on
the nodes n� 1 and nþ 1. Thus, we get for current

iCn
¼ bVT

R3

W a exp
vn�1

VT

� �
; (9)

in ¼ iBnþ1
; (10)

Fig. 1. Circuit diagram of one node showing the components and parame-

ters. R3 is the variable input resistor, which is also used as the feedback

resistor when different nodes are connected together.

Fig. 2. Circuit diagram of the complete circuit having three nodes and feedback loop.
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¼ VT

R3

W a exp
vn

VT

� �
; (11)

and, hence, for voltage

dvn

dt
¼ VCC � vn

CðR1 þ R2Þ
� VT

CR3

� W a exp
vn

VT

� �
þ b

R1

R1 þ R2

W a exp
vn�1

VT

� �� �
:

(12)

IV. MATHEMATICAL ANALYSIS OF THE MODEL

Due to the nonlinearity, we are unable to find a closed
form solution for this system. Instead, we analyze the behav-
iour of the stable states of the system.

A. Fixed point

The system has a fixed point when dvn=dt ¼ 0 for
n ¼ 1; 2; 312. That is

VCC ¼ v1 þ VT
R1 þ R2

R3

W a exp
v1

VT

� ��

þb
R1

R3

W a exp
v3

VT

� ��
; (13)

VCC ¼ v2 þ VT
R1 þ R2

R3

W a exp
v2

VT

� ��

þb
R1

R3

W a exp
v1

VT

� ��
; (14)

VCC ¼ v3 þ VT
R1 þ R2

R3

W a exp
v3

VT

� ��

þb
R1

R3

W a exp
v2

VT

� ��
: (15)

1. Equality of n at fixed point

Without loss of generality, we can assume that v1 � v2

� v3 at the fixed point. Subtracting Eq. (14) from Eq. (15),
we get

ðv3� v2Þ þVT
R1þR2

R3

W a exp
v3

VT

� �
�W a exp

v3

VT

� �� �

¼ VTb
R1

R3

W a exp
v1

VT

� �
�W a exp

v2

VT

� �� �
: (16)

The function WðxÞ is monotonic for positive arguments. So,
as v3 � v2 by assumption, the left hand side of the equation
is � 0. Yet, as v1 � v2, the right hand side of the equation is
� 0. Thus, the two sides are equal only when
v1 ¼ v2 ¼ v3 � vP. Hence, any fixed point of the system
must be of the form ðvP; vP; vPÞ.

2. Existence of unique fixed point

At a fixed point ðvP; vP; vPÞ, the equation of the system is

VCC ¼ vP þ VT
R1ð1þ bÞ þ R2

R3

W a exp
vP

VT

� �
: (17)

Let R ¼ R1ð1þ bÞ þ R2 and R0 ¼ Rþ R3 for simplicity.
Then, we can solve for vP to get

vP ¼ VCC � VT
R

R0
W

ISR0

bVT
exp

VCC

VT

� �
: (18)

Thus, there exists a fixed point, and as WðxÞ is single-valued,
it is unique. Let us also derive a useful equation for future
use. Defining y ¼ ðISR0=bVTÞ exp ðVCC=VTÞ for ease of nota-
tion, we have

W a exp
vP

VT

� �
¼ R3

R0
WðyÞ: (19)

B. Jacobian and its Eigenvalues

In order to determine whether the system has a Hopf bifur-
cation, we need to determine the eigenvalues of the
Jacobian. The Jacobian of the system has two terms

A ¼ @

@vn

dvn

dt

� �����
P

(20)

¼ � 1

C

1

R1 þ R2

þ WðyÞ
R0 þ R3WðyÞ

� �
; (21)

B ¼ @

@vn�1

dvn

dt

� �����
P

(22)

¼ � b
C

R1

R1 þ R2

WðyÞ
R0 þ R3WðyÞ : (23)

In terms of these parameters, the Jacobian is

J ¼
A 0 B
B A 0

0 B A

2
4

3
5: (24)

This matrix has the eigenvalues

k1 ¼ A� B

2
þ

ffiffiffi
3
p

2
Bi; (25)

k2 ¼ A� B

2
�

ffiffiffi
3
p

2
Bi; (26)

k3 ¼ Aþ B: (27)

As A and B are real, we have a pair of complex
eigenvalues.

C. Existence of Hopf bifurcation

The mathematics behind Hopf bifurcations is well
described in textbooks.1,16 Interested readers can refer
them to learn about the existing result of the Hopf bifurca-
tion and its proof. In terms of the system we are analyzing,
the existing result translates to the following. The circuit
displays a Hopf bifurcation if it has a fixed point of the
node voltage ðvP; vP; vPÞ, and at this fixed point, there
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exists a critical value Rc of the bifurcation parameter R3 at
which the eigenvalues of the Jacobian satisfy the following
properties:

Reðk1Þ ¼ Reðk2Þ ¼ 0 and Reðk3Þ 6¼ 0; (28)

d

dR3

Reðk1Þð Þ ¼ d

dR3

Reðk2Þð Þ 6¼ 0: (29)

As we saw in Subsection IV A, the system does indeed
have a fixed point. Also, as A;B are negative,
k3 ¼ Aþ B 6¼ 0, which satisfies part of the first condition.
For the rest, it is evident that the existence of Hopf bifur-
cation depends on

A� B

2
¼ � 1

CðR1 þ R2Þ
1þ R1 þ R2 �

bR1

2

� ��

� WðyÞ
R0 þ R3WðyÞ

�
: (30)

Let us check the second condition first. Computing the deriv-
ative, we get

d

dR3

A� B

2

� �
¼

R1 þ R2 �
bR1

2
CðR1 þ R2Þ

WðyÞ2

ðR0 þ R3WðyÞÞ2

� 2þWðyÞ
1þWðyÞ : (31)

As WðxÞ > 0f orx > 0, this derivative is non-zero for all val-
ues of R3—that is, the second condition holds for any R3.
For the first condition, let us define R0 ¼ bR1=2� R1 � R2

�R3. Then, A ¼ B=2 implies

WðyÞ ¼ R0

R0

¼ 3bR1

2R0

� 1: (32)

After some algebraic manipulations, this becomes

R3 ¼
bR1

2
1� 3

W
3ISR1

2VT
exp

VCCþVT

VT

� �
0
B@

1
CA�R1�R2: (33)

Thus, we get a critical value of R3, and hence, the system
displays a Hopf bifurcation. For future use, the above equa-
tion can be inverted to get VCC

VCC

VT
¼ 3

1� 2

b
R3þR1þR2

R1

þ log

2VT

ISR1

1� 2

b
R3þR1þR2

R1

� 1:

(34)

From this, as WðxÞ > 0 for x > 0, we also get the
inequality

b > 2
R3 þ R1 þ R2

R1

: (35)

Thus, this inequality holds if and only if the system displays
a Hopf bifurcation at that value of R3 (Fig. 3).

V. EXPERIMENTAL SETUP

We constructed the circuit as shown in Fig. 2 with the fol-
lowing circuit components:

• R1: 1kX potentiometer
• R2: 1kX potentiometer
• R3: 100kX potentiometer
• C: 220 nF capacitor
• Transistor (NPN) model: SL100

Note that even though the resistance values R1 and R2 are
held constant during the experiment, we have used potenti-
ometers for them. This is to ensure that the values of
R1and R2 are exactly 1kX and, thus, reduce the error in the
voltages measured. We used an ordinary lab digital storage
oscilloscope (DSO) to measure the voltages vi of the capaci-
tor as a function of the different values of resistance R3 and
applied voltage VCC. As it was easier to change VCC as com-
pared to R3, we measured vi on varying VCC at a fixed R3, for
multiple values of R3.

VI. RESULTS AND DISCUSSIONS

A. Preliminary results

1. Verification of active mode of transistors

In each measurement, for each transistor, the voltage vBE

was around 0:65� 0:75 V, while the voltage vCB was posi-
tive. So, the transistor is indeed operating in the active mode.

2. b value of transistors

The b value of the transistor of each node is given in
Table I. These values are not equal, possibly due to
manufacturing defects. Thus, we use the mean value of
b ¼ 130:5.

Fig. 3. Photograph of the actual circuit prepared on a breadboard showing

all three nodes with electronic components.

Table I. b values of transistors of the circuit.

Node 1 Node 2 Node 3 Mean Standard deviation % Error

129.6 131.7 130.2 130.5 1.08 0.83
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B. Existence of Hopf bifurcation and variation
with applied voltage

On fixing a value of R3, we varied VCC applied to the
circuit, in order to find its value at which we have a
Hopf bifurcation. Figure 4 shows the Hopf bifurcation on a
digital oscilloscope at node 2 of the circuit by varying
VCC with R3 ¼ 61:0kX. The experimental values of R3

and VCC are listed in the Table II. From the data, we can see
that there is no Hopf bifurcation at R3 ¼ 64kX, as we have

2
R3 þ R1 þ R2

R1

¼ 2
64� 103 þ 103 þ 103

103

¼ 132 > b ¼ 130:5; (36)

which satisfies the condition of inequality (Eq. (35)). For
smaller values of R3, Hopf bifurcation occurs. In Fig. 5, we
have plotted these values and compared them to the theoreti-
cal curve. In Fig. 5, we see that the experimental data closely
matches with the theoretical curve constructed using Eq.
(34). This supports the theoretical result we had derived
previously.

C. Type of Hopf bifurcation

There are two types of Hopf bifurcations: supercritical and
subcritical. The most important difference between them, for
us, is reversibility. That is, suppose we vary the bifurcation
resistance R3 such that the bifurcation occurs and then go

back to the original value of R3. Then, the system displaying
supercritical Hopf bifurcation will revert back to the original
voltage state, while it will not for a subcritical Hopf bifurca-
tion. On performing this test to the circuit, we observed that
for each value of applied voltage, the fixed-point node volt-
age returned to the original value. Thus, the circuit displays
a supercritical Hopf bifurcation.

D. Variation of fixed point voltage with applied voltage

and resistance

In the fixed point regime of the circuit, we varied the resis-
tance R3 and applied voltage VCC and observed the values of
vP obtained at each node. From the readings, we can see that
the voltages in each of the three nodes are not identical. This
can be attributed to the three nodes being dissimilar, which
occurs due to the transistors having different b values, for
reasons mentioned before. We also plotted the variation of
vPwithVCC at a fixed resistance R3 and compared it with the
theoretical curve (obtained from Eq. (18)) in Fig. 6. We can
see that there is an excellent match between experimental
data and theoretical results, thus supporting the results we
have obtained.

VII. CONCLUSION

In this paper, we present a simple electronic circuit con-
sisting of three nodes and a feedback loop, which is similar
to a genetic repressilator. The circuit undergoes a Hopf

Fig. 4. Hopf bifurcation at node 2 for a bifurcation resistance R3 ¼ 61:0kX
by varying VCC. Waveforms in a digital oscilloscope at (a) voltage before

the Hopf bifurcation and (b) afterwards.

Table II. Bifurcation resistance vs applied voltage variation.

Resistance at bifurcation

(R3) (kX)

Applied voltage

(VCC) (V)

64.0 No bifurcation occurs

62.5 7.4

62.0 4.2

61.5 3.4

61.0 2.9

60.5 2.4

Fig. 5. Applied voltage (VCC) vs resistance at bifurcation (R3). R2 value of

this plot is 0:9887.

Fig. 6. Plots of fixed point voltage (VP) with applied voltage (VCC) for dif-

ferent bifurcation resistances (R3). The solid curve represents the theoretical

result given in Eq. (18), while the data points represent the experimentally

obtained values. The R2 values of all five graphs range from

0:9753 to 0:9935.

912 Am. J. Phys., Vol. 90, No. 12, December 2022 I. Deo and K. Khare 912



bifurcation based on various system parameters. DC analysis
of the circuit tells us how the voltage (amplitude) varies with
the resistance (bifurcation parameter) in the limit cycle close
to the bifurcation point. Since all components of the appara-
tus involved are readily available, and prerequisite knowl-
edge is within the level of a third year college education in
physics, this experiment serves as a good introduction for
students to experimental nonlinear dynamics.
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